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Abstract: With the development of unmanned aerial vehicle (UAV) systems for a multitude of real-time 

applications, 3D printing technologies have been developed to make thermoplastic structures by fusing 

filament Fused Deposition Modeling (FDM) or Fused Filament Fabrication (FFF). However, we 

consider that the realization of new technologies of experimental models / technological demonstrators 

/ prototypes becomes profitable by using 3D printing technologies. The main aim of the paper is to 

highlight how the use of three types of materials, which are processed differently, influences the Von 

Mises stresses of the payload used for a UAV, with the mission of photographing and filming from high 

altitude. 
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1. Introduction 
UAVs (Unmanned Aerial Vehicles) [1] are defined as generic air vehicles capable of operating 

autonomously, without a pilot on board [2]. The most common types of UAVs are multi-rotor, fixed-

wing, flap-wing, and hybrid wing systems [2] (Figure1). They are considered very useful for activities 

such as mapping, topography, telecommunications [3,4], surveillance, and agricultural management 

[5,6]. The development of technologies for the listed applications was based on innovations in structural 

and aerodynamic projects. Within the CERAS research center, payloads are designed and made for aerial 

drones, in order to develop collaborative robotic systems [7-11]. The need for this study is due to 

increasingly restrictive conditions for reducing carbon emissions [12,13]. Through the introduction of 

new lightweight materials and manufacturing technologies to enable the development of detection and 

control systems - payloads [14]. In other words, the use of additive manufacturing allows remote work, 

and the production of parts, close to the final requirements, consistently reduce emissions due to 

transport and delivery of parts to a desired location [15-17] (Figure 1). 

 

 
 

Figure 1. Hirrus 3D model of the drone and the paylaod components [9] 
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The payload under discussion equips a fixed-wing UAVs, defined as “air vehicle” which uses fixed 

wings in combination with forward traction to generate lift [18,19]. Fixed-wing UAVs allow long flights 

and a degree of operability at high altitudes, as it can carry electronic equipment such as cameras and 

sensors [20-22]. 

This study presents the effects of using two materials, one thermoplastic and one rigid. The design 

and realization of the payload was performed simultaneously with the realization of the UAVS drone - 

HIRRUS-V1. According to the technical specifications [23,24] the project was carried out on two 

modules: the air vehicle and the Payload module. SolidWorks software was used for the design, and 

CFD (Computational Fluid Dynamics) was used for the aerodynamics analysis. Following the analysis 

of the aerodynamic effects on the UAV structure, the materials for the Figure 1 aircraft were selected. 

Depending on the subsequent tests, the materials were selected for payload. 

One of the materials is the Textolite (Phenolic cotton cloth laminate HGW 2082.5 acc. To DIN 

7735) [25] and for the realization of the final products it was subjected to turning, milling, polishing 

operations and most joints required the insertion of additional elements. It also has a certain degree of 

nonlinearity when loading / unloading, the stiffness increasing slightly [26]. The layers of the composite 

material are distributed and oriented according to unidirectional orientations. The inclination of the fibers 

can be 0°, 45° and 90° to increase the strength of the material [27]. Textolite semi-finished products are 

subjected to mechanical processing processes, such as: turning, milling, polishing, polishing [28,29]. As 

a result of these operations, the alignment of the cotton fibers was interrupted and / or delamination was 

produced in the processing area. All these things can lead to the decrease of the thermomechanical 

characteristics and also to the modification of the values of the own modes of vibrations [30,31]. 

The second material is PET-G (Polyethylene Terephthalate - Glycol), which is deposited layer by 

layer. Other characteristics of PETG can be found in [32] (Table 1, Figure 5). 

The third material used is ABS (Acrylonitrile-butadiene-styrene). The material is easy to process 

without the need for a heated bed and does not produce smoke during construction [33-36]. 

The analytical models, from the paper, regarding the distribution of efforts in the components of a 

payload started from the models used for ABS [37]. 

 

2. Materials and methods 
2.1. Details on numerical modeling of Textolite structures - Phenolic Cotton Cloth Laminate 

Textolite is a laminate based on cotton fabric and phenolic resin. This type of material has a high 

wear resistance because the layers of phenolic resin and those of cotton fabric can be aligned 

continuously or discontinuously, unidirectional, or bidirectional, in the form of a matrix. Once the 

Textolite reaches the threshold of the plasticity area, it will suffer a rupture of the cotton fibers, the piece 

showing traces of exfoliation. 

( )1 1f f f mE V E V E=  + −  ,            (1) 

 

where: 
fE și 

mE - represents the modulus of elasticity of the fiber and the matrix for the range of relevant 

sections, respectively  is the volume fraction of the fiber. 

 
Figure 2. Payload made from textolite 

fV
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As can be inferred, the critical breaking point of the adjacent fibers triggers the rupture of the pieces 

in the Textolite. The formation of such a cluster of adjacent fibers depends on the statistical distribution 

of fiber strengths and the transfer of local stresses in the vicinity of the breaking fibers. This cluster is 

influenced by the fiber-matrix interface. 

The Textolite laminate is quasi-isotropic in nature, so that any crack can be highlighted immediately. 

For numerical modeling both cotton fibers and laminate are elastic and linear isotropic. The interface 

between cotton fibers and laminated resin was modeled with a linear softening law with equal critical 

energy (case of the law of elastic-plastic softening interface). 

The component elements of the payload structure made of Textolite come from the processing of 

plate, bar and pipe type semi-finished products (Figure 2). Analytical-numerical modeling of the stress 

of a thin plate requires solving three-dimensional elasticity systems of differential equations. 

 

2.2. Considerations regarding the characteristics of the numerical modeling of the PET-G 

structure 

PET-G is a co-polyester thermoplastic material that is deposited by the FDM method. The resulting 

product is characterized by reasonable tensile strength, impact resistance, durability and flexibility. 

 

 
Figure 3. Representation of 3D printed payload elements from PET-G 

 

About PETG it can be appreciated that some elongation of the material can be approximated in terms 

of tensile stress. On the other hand, it can be seen that it has the characteristics of a material that allows 

the absorption of a fairly large amount of energy, energy that can generate its own modes of vibration 

unfavorable on the structure of the payload. 

 

2.3. Numerical modeling when using ABS 

Finite element modeling aims to distribute the stresses in the structural parts of the payload made of 

ABS and test the capacity of the modulus of elasticity by comparing Young's predicted and experimental 

modulus. 

 
Figure 4. 3D model of the drive components Payload 
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The geometry is transformed into a finite element mesh in which each element is represented by a 

cube-type structural element. Each element is defined by eight nodes and each node has three degrees 

of freedom corresponding to the displacement components (UX, UY, UZ) in the main directions X, Y 

and Z. The density of the network is adapted according to the degree of approximation of the results to 

the characteristics provided by the manufacturer. 

An ABS with modulus of elasticity of 2 [GPa] and a Poisson's contraction coefficient of 0.394 was 

used. The simulation of the structure has the following test conditions: the upper end of the structure 

(the one that does not leave the resting place in the drone during the retraction); and the end provided 

with hinged doors through which the EO / IR (Electro-Optical / Infra-Red) filming module exits is free 

in the Z direction. 

 

3. Results and discussions 
3.1 Kinematic and dynamic analysis of the Payload compartment door opening 

The door has a parallel plane motion, the motion plane being yOz. Figure 5 and Figure 6 show two 

views of it. In Figure 6 the dimensions corresponding to the kinematic model shown in Figure 7 are 

highlighted. 

 

 
Figure 5. Side view of the payload compartment door assembly 

 

In point "A" is a steel shaft that rests in a curved seat that can slide along it, in point B there is a 

geometric configuration that allows this end to hang on the side of a closed toothed belt, mounted 

between two belt wheels. 

 

         
                 Figure 6. Front view of the payload       Figure 7. Schematic used in determining the 

                       compartment door assembly            kinematics and dynamic model of the payload 

     compartment door opening 

 

In (Figure 7) point A rests on the curve of the seat (C1) and B rests on the belt, which being stretched 

and undeformable during movement, represents a linear support (inclined line C2). Point C represents 

the center of mass and C 'is the projection of the center of mass on the segment AB (Figure 8). 

Curve C1 is given by the explicit form: 
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( ) 2 2 3311,951 10,658 0,396 5,28 10f x x x x −=  −  +  +  ,                           (2) 

 

and the line C2 intersects the axis Ox in:  42.493 mmx = , having a slope: 13.116cuream = . A simple 

calculation result: 0,557curean = − . 

The weight of the payload compartment door assembly is: 58.91 [g], and the volume is; 26716.58 

[mm3]. The calculated principal moments of inertia with respect to the central principal system are: 
2

1 109026.89J g mm =   , 2

2 87537.99J g mm =    and 2

3 29685J g mm =   , respectively with 

respect to the three axes of the reference system. 

 

 
Figure 8. The support plate, made of ABS, with the curved 

seat and that of the belt system 

 

The moments of inertia with respect to the system originating in the center of mass, with the axes 

parallel to the axes of the global system are: 

 
2 2 229742.82 ; 998.59 ; 1516.41xx xy xzJ g mm J g mm J g mm     =  = −  = −       , 

2 2 2998.59 ; 104427.67 ; 8827.89yx yy yzJ g mm J g mm J g mm     = −  =  =       , 

2 2 21516.41 ; 8827.89 ; 92080.33zx zy zzJ g mm J g mm J g mm     = −  =  =       . 

 

3.2 Determining the kinematics 

A displacement of point B is imposed along the direction of the belt, which depends on the speed of 

the belt. This law is considered: 

 

( ) ( ) ( )

( )

0
0

0

0 0 0

0 0
0

0 0

, if

, if and

, if

f

f f

v mt t t
st

mv t v t t t t t
s

v v mt t t t t
st t

     

  =   −  

  −  +   −
  


,                 (3) 

where:  0 0,3t s=  - accelerating/decelerating time from 0 to ;  0 4,5t s=  - final time; 0 0,011 mv
s

 =
 

 - 

(Figure 9). 

0v
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The initial position of the door is "closed", point A having the coordinates (4; 6.72). 

Using the length of the segment, determine the initial position of point B with the equations of the 2 

support curves, resulting in coordinates (44.06; 20.50). Divide the time interval into “n” intervals, 

denoted by  f

t

t
D s

n
= , so that the coordinates of point B will be determined by the relation: 

 

( )
 

 

1

1 1

1

21
j j

j j

j

B B t

curea

B curea B curea

v t
x x D mm

m

y m x n mm

+

+ +

+

 = + 

+


=  +

 .                 (4) 

 

From (4) result the coordinates of point A, determined with: 

 

( ) ( )1 1 1 1

22
2 2

j j j jB A B A ABx x y f x L mm
+ + + +

   − + − =   
,              (5) 

 

where, Oy coordinate is given by: ( )1 1j jA Ay f x
+ +
= . 

 

         
Figure 9. Graphical representation of the speed in point B 

 

It is possible to determine, thus the versor of the oriented vector AB  and the oriented vector 

AC  

    

( ) ( )

( ) ( )
( ) ( )'

2 2

0

0

j j j j

j

j j j j

j

B A B A

AB

B A B A

J AB x yjAC j

x x i y y i k
n

x x y y

AC L n AC i AC j k

 − + − +
 =


− + −

   =  = + +


,                (6) 

 

because CC AB ⊥ , direction unit vector of CC  is 
j jCC ABn k n =   and  

 ( ) ( ) 0
jj CC CC x yj j

CC L n CC i CC j k 
  =  = + + , in which case the coordinates of the point are given by (7) and 

of the center of mass are given by (8): 

 

( )

( )
j j

j j

C x Aj

C y Aj

x AC x

y AC y





 = +



= +

,            (7)     

( )

( )
j j

j j

C x Cj

C y Cj

x CC x

y CC y





 = − +



= − +

,              (8) 
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       Figure 10. Time variations of the center of               Figure 11. The time variation of the angular 

                      mass velocity components                                                  speed of the door 

 

The positions of the points in time allow the determination of speeds and accelerations. Thus, the 

speed and acceleration components of the center of mass (Figure 10) are given by: 

 

1 1

1 1

x xj j j j

x xj j

j j y yj j

y j y j

C CC C

C C

t t

C C C C

C C
t t

v vx x
v a

D D

y y v v
v a

D D

+ +

+ +

−−
= =


 
− − 

= = 
 

,               (9) 

The time variation of the angle of inclination of the segment AB, represents the angular velocity 

(Figure 11) of the door assembly of the payload compartment. 

 

1 1

1 1

1

arctg arctg
j j j j

j j j j

B A B A

B A B A

j

t

j j

j

t

y y y y

x x x x

D

D



 


+ +

+ +

+

    − −
    −

   − −     =



−
=



,              (10) 

3.3 Dynamic analysis 

By isolating the payload compartment door assembly, in point B having a joint and in point A having 

a simple friction bearing, the situation is obtained from (Figure 12). In what follows, apart from the force 

of gravity, the terms are dependent on indices j, so, for simplicity, this index is omitted: 

0 0G i mgj k= − + , 0 0V i Vj k= + + , 0 0H Hi j k= + + , ( )1 0AN f i j k=   − + , 21 AN f =   + , 

21 0
yx

AA

f A

A A

vv
F f i j k

v v

 
= −   +  + +  

 
 , 21f AF f = −   + . 

 

Figure 12. Insulation of the 

payload compartment door 

assembly 
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It follows from the impulse theorem: 

x x

y y

C x f

C y f

m a H N F

m a V G N F

 = + +


 = − + +
,                (11) 

 

and the kinetic moment theorem written with respect to the center of mass and projected on the Oz axis, 

results: 

( ) ( ) ( ) ( )z C C C C f
z z z z

J M V M H M N M F = + + +                (12) 

 

The following system of equations results from the expressions of forces and relations (11), (12): 

 

21 x

x

A

C A A

A

v
m a H f f

v
  = +   −   +   

21
y

y

A

C A

A

v
m a V f m g

v
 = − −   +  −   

( ) ( ) ( ) ( )
( ) ( )

21
yA A C Ax A C

z B C B C A C A A C A

A

v x x v y y
J H y y V x x x x f y y f

v

 − −  −
   = −  − +  − −  − +  − −   +    

 

The system contains three unknown functions: ( )H t , ( )V t , ( )t . From the first two relations it is 

determined ( )H t  and respectively ( )V t , which are introduced in the last equation, whence its expression 

results ( )t : 

 

( ) ( ) ( )

( ) ( ) ( )21 2

x

yx

z C B C Cy B C B C

AA

B A A B A A B A A B C

A A

J m a y y m a x x m g x x

vv
x x f y y f y y x x x

v v

  +   − −   − −   −
 =

 
 − +  − −   +   − +  + − 

   

 

 

hence the components of the normal reaction force (Figure 13). 

 

 
Figure 13. The variation in time of the normal reaction 

 

 

 

3.4 Finite element model 

In the finite element model a double symmetry of the (Figure 14) structure is considered. 
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For plane 1 of symmetry, the boundary conditions are displacements along the zero axis Ox, and for 

plane 2, displacements along the zero axis OZ. It is observed that the maximum normal reaction force is 

obtained if the payload compartment door is closed, so at the beginning of the opening movement. 

All nodes in the mounting holes of the rest of the drone structure have all zero displacements. The 

nodes in the contact area of the door with the drive belt are also locked. On the steel bolt entering the 

curved seat, mechanically equivalent forces are distributed with the values of the normal reaction 

corresponding to the initial moment. The component parts of the considered structure are made of ABS 

with longitudinal modulus of elasticity, tensile breaking stress, Poisson's ratio 0.394. 

The structure was divided with tetrahedral elements. Figure 15 shows the division with elements and 

a detail of the contact area. 

 

 

 
Figure 15. Meshing with tetrahedral elements. Detail of the mesh in the contact area 

 

In (Figure 16) is presented the field of total deformations and in (Figure 17) the field of equivalent 

stresses in the contact area between the steel bolt and the curved seat of the ABS structure. 

 

 

Figure 14. The part of 

geometry considered 
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         Figure 16. The resulting                               Figure 17. Contact area detail for ABS parts: 

         displacement field                                  representation of Von Mises equivalent stresses 

 

4. Conclusions 
ABS have some advantages over Textolite and PET-G: greater resistance to thermal degradation; 

greater thermal stability; a lower statistical dispersion of ABS compared to PET-G; increased flexibility 

in 3D printing. 

It is found that the stresses in the contact area do not exceed 1Mpa, thus being rational the use of 

plastics in the realization of the component parts of this assembly. 

For the future, the action of aerodynamic forces that produce an increase in mechanical stresses must 

also be considered. Wear will be studied at the contact between two parts, one movable and the other 

fixed, which slides, and the movement is in the form of cycles. In particular, the traces left will be 

studied. When paying, the doors have metal elements that lead to bearing wear. A device will be built to 

simulate a number of movements of the metal elements on different plastics. 
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